

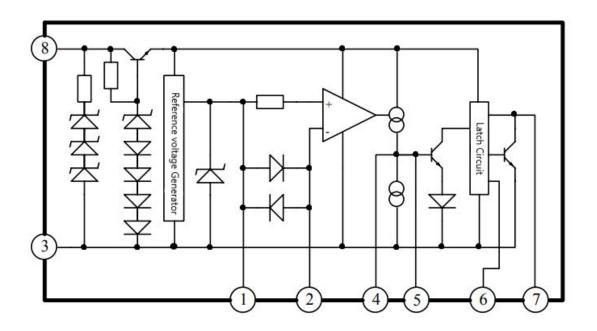
Earth Leakage Current Detector

SSP54123

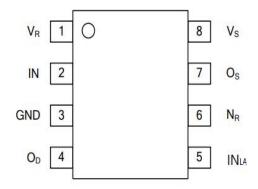
General Description

SSP54123 is designed for use in earth leakage circuit interrupters for operation directly off the AC line in breakers; It includes voltage regulator, amplifier, Latch, etc. The circuits can absorb the external surge voltage and improve the anti-interference ability of the chip in high voltage, spike pulse and high-frequency electromagnetic. Improve the chip Stable reliability

Features


- High input sensitivity : VT=6.1mV (Typ.)
- Simple peripheral circuit
- Good anti-interference, electromagnetic interference protection capability
- Suitable for 110V~220V AC power leakage protection applications
- Wide temperature range : from -20 °C to +80°C
- SOP8 and DIP8 package

Order Information


Part No	Package	Manner of Packing	Devices per reel/tube
SSP54123S	SOP8	Reel	2500PCS/reel
SSP54123D	DIP8	Tube	100PCS/tube

Block Diagram

Pin Arrangement Diagram and Pin Assignment

DIP-8 / SOP-8

Pin No.	Pin Name	Description	Pin No.	Pin Name	Description
1	V_R	Reference voltage terminal	5	IN_{LA}	Latch input terminal
2	IN	Input terminal	6	N_R	Terminal for noise absorption
3	GND	Ground	7	Os	Output terminal
4	O_D	Differential amplifier output terminal	8	Vs	Supply voltage terminal

Functional Description

SSP54123 is a universal integrated circuit (IC) for leakage protection switch. It can be used in such applications as leakage protection circuit breakers.

Absolute Maximum Ratings

Unless otherwise specified, T_{amb}= 25°C

Parameter	Symbol	Conditions	Value	Unit
Supply Voltage Input	I_{S}		8	mA
		V _R ~IN	20	mA
V _R Pin Current	$I_{ m VR}$	V _R ~GND 2		mA
		IN~V _R	-20	mA
		IN~V _R	20	mA
IN Terminal Current	$I_{\rm IN}$	IN~GND	2	mA
		V _R ~IN	-20	mA
IN _{LA} Terminal Current	I _{INLA}		5	mA
Power Dissipation	P_{D}		200	mW
Operating Temperature	Tamb		-25~80	°C
Storage Temperature	Tstg		-55~125	°C

Notes:

1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Current value between V_R and IN, and between IN and V_R is less than 1ms in the pulse width, and duty cycle is less than 12%.

Thermal Information

(T=-20°C \sim 80°C)

Parameter	Symbol	Recon	Unit		
Farameter	Syllibol	Min	Тур	Max	Unit
Supply Voltage When Latch Circuit Is Off-State	V_{S}	12			V
External Capacitor Between Vs and GND	Cvs	1	2.2		μF
External Capacitor Between Os and GND	Cos		0.047	1	μF

Electrical Characteristics

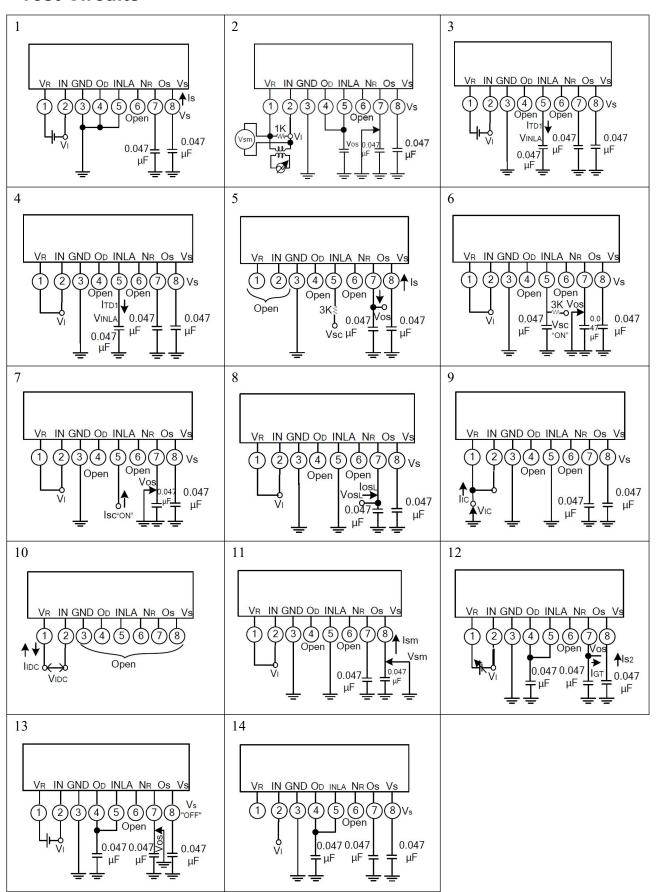
Unless otherwise specified, T_{amb}= 25°C

		Test Conditions					
Parameter	Symbol		Test	Min	Тур	Max	Unit
			Circuits				
Supply Current 1	I_{S1}	V _S =12V,	1		300	500	μA
Supply Cullent 1	ISI	$V_R-V_i=30mV$	1		300	300	μΑ
Trip Voltage	V_T	V _R -V _i (Note 1)	2	4	6.1	9	mV
Timed Current 1	I_{TD1}	$V_{OD}=1.2V$,	3	-20		-35	
Timed Current 1	TIDI	$V_R-V_i=30mV$	3	-20		-33	μA
Timed Current 2	I_{TD2}	$V_{OD}=0.3V, V_{R}=V_{i}$	4		4		μΑ
		$I_S=400 \mu A,$					
Output Current	Io	$V_{INLA}=1.4V$,	5	-100	-250		μA
		$V_{OS}=0.8V$					
INLA "ON" Voltage	V _{LAON}	(Note 2)	6	0.7		1.4	V
INLA Input Current	I _{LAON}	$V_S=12V$	7			5	μΑ
Output Low-Level	I_{OL}	$V_{S}=12V, V_{OS}=0.2V$	8	200	800		
Current	TOL	v _S -12v, v _{OS} -0.2v	o	200	800		μA
Input Clamp Voltage	V_{ICL}	$V_S=12V$, $I_{IC}=20mA$	9		14		V
Differential Input	V_{IDCL}	$I_{IDC}=1 mA$	10	1		2	V
Clamp Voltage	V IDCL	IIDC-IIIA	10	1		2	v
Maximum Current	V_{SM}	$I_{SM}=7mA$	11	20		28	V
Voltage	V SM	ISM-/IIIA	11	20		20	V
Supply Current 2	I_{S2}	V_R - V_i , V_{OS} =0.6 V	12		700	900	μΑ
(Note 3)	182	(Note 4)	12		700	900	μΑ
Latch Circuit is							
Off-State Supply	V_{soff}	(Note 5)	13		4.9		V
Voltage							
Operating Time	Ton	V_R - V_i =0.3V (Note 6)	14		5		ms

Note 1: When standard value of voltage (50Hz) between V_R and V_i is minimum, and output O_S is low-level, or when standard value of voltage (50Hz) between V_R and V_i is maximum, and output O_S is high-level.

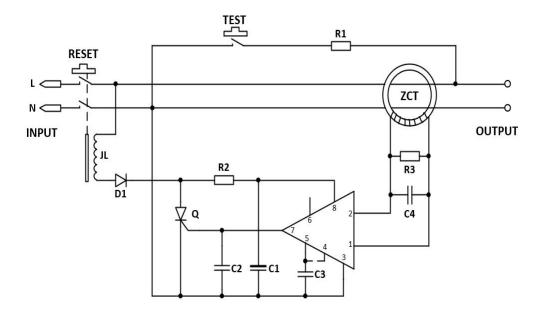
Note 2: When standard value of voltage V_{LAON} is minimum, and output O_S is low-level, or when standard value of voltage V_{LAON} is maximum, and output O_S is high-level.

Note 3: Supply current 2 is necessary to keep high in output Os.

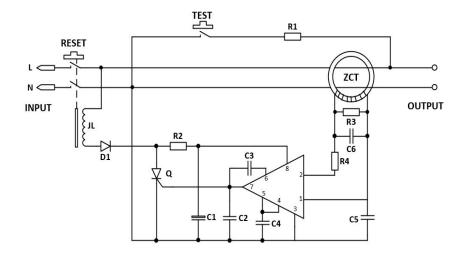

Note 4: After applying 30mV between VR and Vi and shorting between them.

Note 5: After the 12V supply voltage is applied and the output is set to high level, reduce the supply voltage output to low level and measure the voltage drop.

Note 6: Operating time is a time from applying fixed input till operating latch circuit in $0.047\mu F$ between OD and GND.

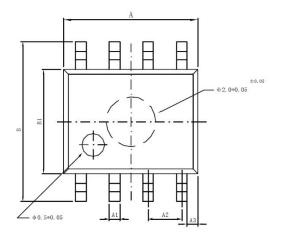


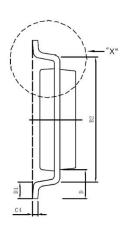
Test Circuits



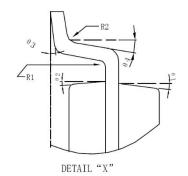
Application Circuits

- (1) ZCT is zero current transformers
- (2) The value of R2, C1 should be chosen in order to keep at least 12V in Vs (Pin8). R2 and C1 can be selected according to the used grid voltage and rectifier circuit mode;
- (3) Please connect C1 (>1 μ F) and C2 (<1 μ F);
- (4) R3 regulates sensitivity current;
- (5) Pin 5 must be connected to the C3 capacitor. Pin 4 and Pin 5 is short-circuited or unconnected.

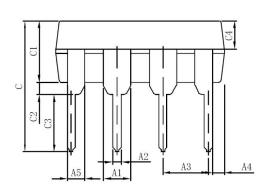

Compared with other Product Circuits

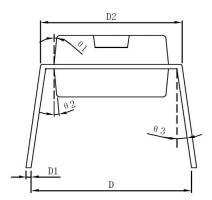


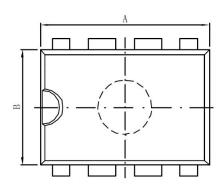
Compared with the ordinary IC circuit without optimization, the peripheral components of SSP54123 reduce R4, C3 and C5, so the application circuit is simpler and the use cost is lower.



Package Information (SOP8)






Symbol	Min.(mm)	Max.(mm)	Symbol	Min.(mm)	Max.(mm)	
Α	4.95	5.15	C3	0.10	0.20	
A1	0.37	0.47	C4	0.20TYP		
A2	1.27	TYP	D	1.05TYP		
А3	0.41	TYP	D1	0.50TYP		
В	5.80	6.20	R1	0.07	TYP	
B1	3.80	4.00	R2	0.07TYP		
B2	5.0	TYP	θ1	17°TYP		
С	1.30	1.50	θ2	13°TYP		
C1	0.55	0.65	θ3	4°TYP		
C2	0.55	0.65	θ4	12°TYP		

Package Information (DIP8)

Symbol	Min.(mm)	Max.(mm)	Symbol	Min.(mm)	Max.(mm)	
Α	9.30	9.50	C3	0.50		
A1	1.5	524	C4	3.3		
A2	0.39	0.53	D	1.57TYP		
А3	2.54		D1	8.20	8.80	
A4	0.66TYP		R1	0.20	0.35	
A5	0.99TYP		R2	7.62	7.87	
В	6.3	6.5	θ1	8°TYP		
С	7.20		θ2	8°T	ΥP	
C1	3.30	3.50	θ3	5°TYP		

V1.0

Special Instructions

The company reserves the right of final interpretation of this specification.

Version Change Description

Version: V1.0 Author: Yang Time: 2022.4.1

Modify the record:

1. Re-typesetting the manual and checking some data

Statement

The information in the usage specification is correct at the time of publication, Shanghai Siproin Microelectronics Co. has the right to change and interpret the specification, and reserves the right to modify the product without prior notice. Users can obtain the latest version information from our official website or other effective channels before confirmation, and verify whether the relevant information is complete and up to date.

With any semiconductor product, there is a certain possibility of failure or failure under certain conditions. The buyer is responsible for complying with safety standards and taking safety measures when using the product for system design and complete machine manufacturing. The product is not authorized to be used as a critical component in life-saving or life-sustaining products or systems, in order to avoid potential failure risks that may cause personal injury or property loss.